Local Well-posedness for the Maxwell-schrödinger Equation

نویسندگان

  • MAKOTO NAKAMURA
  • TAKESHI WADA
چکیده

Time local well-posedness for the Maxwell-Schrödinger equation in the Coulomb gauge is studied in Sobolev spaces by the contraction mapping principle. The Lorentz gauge and the temporal gauge cases are also treated by the gauge transform. Mathematics Subject Classification (2000) : 35Q55, 35Q60, 35L70.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Existence and Uniqueness of Solutions to the Maxwell-Schrödinger Equations

The time local and global well-posedness for the Maxwell-Schrödinger equations is considered in Sobolev spaces in three spatial dimensions. The Strichartz estimates of Koch and Tzvetkov type are used for obtaining the solutions in the Sobolev spaces of low regularities. One of the main results is that the solutions exist time globally for large data. §

متن کامل

On the periodic Schrödinger-Debye equation

We study local and global well-posedness of the initial value problem for the Schrödinger-Debye equation in the periodic case. More precisely, we prove local well-posedness for the periodic Schrödinger-Debye equation with subcritical nonlinearity in arbitrary dimensions. Moreover, we derive a new a priori estimate for the H norm of solutions of the periodic Schrödinger-Debye equation. A novel p...

متن کامل

Well-posedness and standing waves for the fourth-order non-linear Schrödinger-type equation

We consider the initial value problem for the fourth-order non-linear Schrödinger-type equation (4NLS) which describes the motion of an isolated vortex filament. In the first part of this note we review some recent results on the time local well-posedness of (4NLS) and give the alternative proof of those results. In the second part of this note we consider the stability of a standing wave solut...

متن کامل

Global Well-posedness and Scattering for Derivative Schrödinger Equation

In this paper we mainly study the Cauchy problem for the derivative nonlinear Schrödinger equation in d-dimension (d ≥ 2). We obtain some global well-posedness results with small initial data. The crucial ingredients are L e , L ∞,2 e type estimates, and inhomogeneous local smoothing estimate (L e estimate). As a by-product, the scattering results with small initial data are also obtained.

متن کامل

Cutoff Resolvent Estimates and the Semilinear Schrödinger Equation

This paper shows how abstract resolvent estimates imply local smoothing for solutions to the Schrödinger equation. If the resolvent estimate has a loss when compared to the optimal, non-trapping estimate, there is a corresponding loss in regularity in the local smoothing estimate. As an application, we apply well-known techniques to obtain well-posedness results for the semi-linear Schrödinger ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003